
SCALABLE HIGH-THROUGHPUT SRAM-BASED ARCHITECTURE FOR IP-LOOKUP
USING FPGA

Hoang Le, Weirong Jiang, Viktor K. Prasanna

Ming Hsieh Department of Electrical Engineering
University of Southern California

Los Angeles, CA 90089, USA
{hoangle, weirongj, prasanna}@usc.edu

ABSTRACT
Most high-speed Internet Protocol (IP) lookup implemen-

tations use tree traversal and pipelining. However, this ap-

proach results in inefficient memory utilization. Due to avail-

able on-chip memory and pin limitations of FPGAs, state-

of-the-art designs on FPGAs cannot support large routing ta-

bles arising in backbone routers. Therefore, ternary content

addressable memory (TCAM) is widely used. We propose a

novel SRAM-based linear pipeline architecture, named DuPI.

Using a single Virtex-4, DuPI can support a routing table of

up to 228K prefixes, which is 3× the state-of-the-art. Our

architecture can also be easily partitioned, so as to use ex-

ternal SRAM to handle even larger routing tables (up to 2 M

prefixes), while maintaining a 324 MLPS throughput. The

use of SRAM (instead of TCAM) leads to orders of magni-

tude of reduction in power dissipation. Employing caching

to exploit Internet traffic locality, we can achieve a through-

put of 1.3 GLPS (billion lookups per second). Our design

also maintains packet input order, and supports in-place non-

blocking route updates.

1. INTRODUCTION

Most hardware-based solutions for high speed packet for-

warding in routers fall into two main categories: ternary

content addressable memory (TCAM)-based and dynamic-

static random access memory (DRAM/SRAM)-based solu-

tions. Although TCAM-based engines can retrieve results

in just one clock cycle, their throughput is limited by the

relatively low speed of TCAMs. They are expensive and

offer little adaptability to new addressing and routing proto-

cols [1]. As shown in Table 1, SRAMs outperform TCAMs

with respect to speed, density, and power consumption. Since

SRAM-based solutions utilize some kind of tree traversal,

they require multiple cycles to perform a single IP lookup.

Several researchers have explored pipelining to improve the

throughput. A simple pipelining approach is to map each

SUPPORTED BY THE UNITED STATES NATIONAL SCIENCE

FOUNDATION UNDER GRANT NO. CCF-0702784. EQUIPMENT

GRANT FROM XILINX INC. IS GRATEFULLY ACKNOWLEDGED.

Table 1. Comparison of TCAM and SRAM technologies
TCAM (18

Mb chip)

SRAM (18

Mb chip)

Maximum clock rate (MHz) 266 [2] 400 [3, 4]

Cell size (# transistors/bit) [5] 16 6

Power consumption (Watts) 12 ∼ 15 [6] ≈ 0.1 [7]

tree level onto a pipeline stage with its own memory and

processing logic. One packet can be processed every clock

cycle. However, these designs result in inefficient memory

utilization, since each node must store the addresses of its

child nodes. This inefficiency dictates the size of the routing

table that an SRAM-based solution can support. In addition,

since each stage needs its own memory, it is not feasible to

use external SRAM for all stages, due to the constraint on

the number of I/O pins. We have two constraints: the num-

ber of external SRAM banks and the limited amount of on-

chip memory. These two constraints are interdependent and

make the current solutions very difficult to scale to support

larger routing tables. This scalability has been a dominant

issue for any implementation on FPGAs.

The key issues in designing an architecture for IP lookup

are (1) the size of supported routing table, (2) high through-

put, (3) in-order packet output, (4) incremental update, and

(5) power consumption. To address these challenges, we

propose and implement a scalable, high-throughput SRAM-

based dual linear pipeline architecture for IP Lookup on FP-

GAs (DuPI). This paper makes the following contributions:

• To the best of our knowledge, this architecture is the

first binary-tree-based design to use on-chip FPGA

resources only to support a large routing table up to

228K prefixes. This is 3 times the size of a Mae-West

routing table (rrc08, 20060101, 83662 prefixes) [8].

• DuPI is also the first architecture that can easily inter-

face with external SRAM. Using this we can handle

up to 2M prefixes, which is 8 times the size of the cur-

rent largest routing table (rrc11, 20080305, 246583
prefixes) [8].

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.
137

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 11, 2008 at 11:12 from IEEE Xplore. Restrictions apply.

• The implementation results show a sustained through-

put of 324 MLPS, whether or not off-chip commodity

SRAM is used, for a non-cache design, and 1.3 GLPS

for cache-based design. This is a promising solution

for next generation IP routers.

The rest of the paper is organized as follows. Section

2 covers the background and related work. Section 3 in-

troduces the DiPI architecture. Section 4 describes DuPI

implementation. Section 5 presents implementation results.

Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK
2.1. Trie-based IP Lookup

The IP lookup problem is longest prefix matching (LPM)

problem. The common data structure in algorithmic solu-

tions for performing LPM is some form of tree, such as trie

[9]. A trie is a binary-tree-like data structure for LPM. Each

prefix is represented by a node in the trie, and the value of

the prefix corresponds to the path from the root of the tree

to the node. The prefix bits are scanned left to right. If the

scanned bit is 0, the node has a child to the left. A bit of

1 indicates a child to the right. IP lookup is performed by

traversing the trie according to the bits in the IP address.

When a leaf is reached, the last seen prefix along the path

to the leaf is the longest matching prefix for the IP address.

The time to look up a uni-bit trie (which is traversed in a

bit-by-bit fashion), is equal to the prefix length. The use of

multiple bits in one scan increases the search speed. Such a

trie is called a multi-bit trie.

2.2. Related Work

Since the proposed work addresses FPGA implementation,

we summarize related work in this area. TCAM is widely

used to simplify the complexity of the designs. However,

TCAM results in lower overall clock speed and increases the

power consumption of the entire system. Song et al. [10] in-

troduce an architecture called BV-TCAM, which combines

the TCAM and the Bit Vector (BV) algorithm to compress

effectively the data representations and boost the through-

put. Due to the relatively low clock rate of TCAMs, this

design can only handle a lookup rate of about 30 MLPS.

The fastest IP lookup implementation on FPGAs to date

is reported in [11], which can achieve a lookup rate of 325
MLPS. This is a bidirectional optimized linear pipeline ar-

chitecture, named BiOLP, which takes advantage of the dual-

ported SRAM to map the prefix trie in both directions. By

doing this, BiOLP achieves a perfectly balanced memory

allocation over all pipeline stages. BiOLP also supports a

Mae-West routing table (rrc08, 84K prefixes).

Another very fast IP lookup implementation on FPGAs

to date is described in [12], which can achieve a lookup rate

of 263 MLPS. Their architecture takes advantage of both

a traditional hashing scheme and reconfigurable hardware.

They implement only the colliding prefixes (prefixes that

have the same hashing value), on reconfigurable hardware,

and the remaining prefixes in a main table in memory. This

architecture supports a Mae-West routing table (rrc08, 84K

prefixes), and can be updated using partial reconfiguration

when adding or removing prefixes. However, it does not

support incremental update, and the update time is lower

bounded by the time required for partial reconfiguration. It

is also not clear how to scale this design to support larger

routing tables, due to the nondeterministic characteristic of

the hashing function. Moreover, the power consumption of

this design is potentially high, due to the large number of

logic resources utilized.

Baboescu et al. [17] propose a Ring pipeline architecture

for tree-based search engines. The pipeline stages are con-

figured in a circular, multi-point access pipeline so that the

search can be initiated at any stage. This architecture is im-

plemented in [18] and achieves a throughput of 125 MLPS.

Sangireddy et al. [13] propose two algorithms, Elevator-

Stairs and log W-Elevators, which are scalable and mem-

ory efficient. However, their designs can only achieve up

to 21.41 MLPS. Meribout et al. [14] present another archi-

tecture, with the lookup speed of 66 MLPS. In this design, a

commodity Random Access Memory (RAM) is needed, and

the achieved lookup rate is reasonably low.

3. DuPI ARCHITECTURE
3.1. Binary-tree-based IP Lookup
We propose a memory efficient data structure based on a

binary tree. Binary search tree (BST) is a special binary

tree data structure with the following properties: (1) each

node has a value; (2) the left subtree of a node contains only

values less than the node’s value; (3) the right subtree of a

node contains only values greater than the node’s value. In

an optimal binary search tree, an element can be found in

at most (1 + log2 N) operations, where N is the number of

nodes.

Figure 1 illustrates a sample prefix set and its corre-

sponding binary search tree. For simplicity, IP addresses

with length of 8 bits are considered. Prefixes are padded

with ones as shown in the third column. The fourth col-

umn is the number of padded bits. The padded prefix and

its number of padded bits are concatenated, and this value is

used to build the tree. However, the value that is stored in

each node is the concatenation of the padded prefix and the

length of the original prefix. For example, node #4 has the

value of 01001111|101, not 01001111|011. All the prefixes

are sorted in descending order, as shown in the last column.

The header of an incoming packet is extracted and enters the

tree from its root. At each node, only the k most significant
bits of the node’s padded prefix and the packet’s IP address

are compared, where k is the length of the node’s prefix.

Given such a binary search tree, IP lookup is performed

by traversing left or right depending on the comparison re-

138

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 11, 2008 at 11:12 from IEEE Xplore. Restrictions apply.

 Prefix ‘1’ padded
prefix

padded
bits

Sorted
rank

P1 0* 01111111 111 3
P2 000* 00011111 101 8
P3 010* 01011111 101 5
P4 01001* 01001111 011 7
P5 01011* 01011111 011 6
P6 011* 01111111 101 4
P7 110* 11011111 101 2
P8 111* 11111111 101 1

(a) Prefix set

(b) Binary search tree

Fig. 1. Sample prefix set and its binary search tree

sult at each node. If the packet header IP is smaller or equal

to node’s value, it is forwarded to the left branch, and to the

right branch otherwise. For example, assume that a packet

with header’s IP of 01001010 arrives. At the root, the prefix

011∗, with length of 3, is compared with 010 of the header

IP, which is smaller. Thus packet traverses to the left. The

comparison with value in node #6 yields a smaller outcome,

hence packet again traverses to the left. At node #7, the

packet header matches the node’s prefix, and is forwarded

to the left to find a longer prefix, if any. However, no match

has been found at node #8, and hence, the prefix at node #7

(or P4) is the longest matched prefix.

We must ensure that the proposed algorithm actually finds

the longest matching prefix. Given two prefixes, PA and PB ,

PA is a longer matching prefix than PB iff PB is included

in PA. This is referred to as PA is longer than PB hereafter.

Property: Given two prefixes, PA and PB , if PA is longer

than PB then PA belongs to the left branch of PB .

Let P ′
A, P ′

B be PA, PB after 1-padding, respectively. Since

PA is longer than PB , and prefixes are 1-padded, all bits of

P ′
A and P ′

B are identical in all cases, except for the bits that

make PA longer than PB . If these bits are all 1, we have

P ′
A = P ′

B , else P ′
A < P ′

B . The use of the number of padded

bits helps break the tie. As PA is longer than PB , the number

of non-prefix bits of PA is smaller than that of PB , causing

P ′
A < P ′

B . By property #2 of BST, PA belongs to the left

branch of PB . Therefore, in all cases, the above property is

satisfied.

3.2. DuPI Architecture

A binary tree structure is utilized in our design. To ensure

that every IP lookup results in the same number of opera-

tions or cycles, the IP address continues with all the com-

parisons even though a match may have already been found.

A pipelining technique is used to increase the throughput.

The number of pipeline stages is determined by the maxi-

Comp

B>AA

B B

Comp

Dual Port
SRAM

Addr1

Addr2

Data1

Data2Address

IP

Address

IP

Address

IP BB

A B>A Address

IP

Pipeline 1
Pipeline 2

Len+FIDLen+FID

Len+FID Len+FID
LFIn LFOut

LFIn LFOut

Fig. 2. Block diagram of DuPI architecture

mum number of operations needed to traverse the tree. For

the design to work, each stage has its own memory (or ta-

ble). Each table is one level of a binary tree structure, so

the memory size doubles in each stage. For example, the

first stage has only one element, the second one has two,

the third one has four, and so on. The maximum number of

elements in each stage is determined by 2n, where n is the

stage number.

The block diagram of the basic architecture and a sin-

gle stage are shown in Figure 2. The architecture is con-

figured as dual linear pipelines. At each stage, the mem-

ory has dual Read/Write ports so that two packets can be

input every clock cycle. The content of each entry in the

memory includes (1) the padded prefix of the current node;

(2) the length of the prefix; and (3) the status of this prefix

(up/down). At each stage, there are 4 data that are forwarded

from the previous stage: the IP address of the package, the

address to access the memory, the length, and flow informa-

tion of the previously longest matched prefix. The memory

address is used to retrieve the node’s value, which is com-

pared with the packet’s IP address to determine matching

status. If there is a match, and it is longer than the previously

stored match, the length and flow information of the new

match replace the old ones. The IP address is forwarded left

or right depending on the comparison result, as described

in Section 3.1. The comparison result (1 if packet’s IP is

greater than node’s padded prefix, 0 otherwise) is concate-

nated with the current memory address and forwarded to the

next stage.

3.3. Tree Mapping Algorithm

A complete BST is required for efficient memory utiliza-

tion. All levels must be fully occupied, except for the last

one. In the last level, if it is not full, all elements must be

as far left as possible. Given a sorted array of elements in

ascending order, this BST can easily be built by picking the

right pivot as the root and recursively building the left and

right subtrees. Two cases of complete BSTs are illustrated

in Figure 3.

Let N be the number of elements, n be the number of

139

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 11, 2008 at 11:12 from IEEE Xplore. Restrictions apply.

(a) (b)

0

n-1
n-2

1

Fig. 3. Two cases of complete BST

Cache
Module

4-1
FIFO

DuPBI

5-4
FIFO

DELAY

I1

I2

I3

I4

O1

O3

O4

Cache
Module

4-1
FIFO

5-4
FIFO

I5

I6

I7

I8

O5

O6

O7

O8

Miss

Miss

Hit

Hit

O2

Fig. 4. Top level block diagram of cache-based DuPI

levels, and Δ be the number of elements in the last level.

The total number of nodes in all stages, excluding the last

one, is 2n−1 − 1. Therefore, the number of nodes in the last

stage is Δ = N − (2n−1 − 1). There are 2n−1 nodes in the

last stage if it is full. If Δ ≤ 2n−1/2, we have a complete

BST, as in Figure 3 (a), or (b) otherwise. Let x be the index

of the desired root. x can be calculated as: x = 2n−2−1+Δ
for case (a), or x = 2n−1−1 for case (b). The complete BST

can be built recursively, as described in Algorithm 1.

Algorithm 1 COMPLETEBST(SORTED ARRAY)

Input: Array of N elements is sorted in ascending order

Output: Complete BST

1: n = �log2(N + 1)�,Δ = N − (2n−1 − 1)
2: if (Δ ≤ 2n−1/2) then
3: x = 2n−2 − 1 + Δ
4: else
5: x = 2n−1 − 1
6: end if
7: Pick element x as root

8: Left-branch of x = COMPLETEBST(left-of-x sub-array)

9: Right-branch of x = COMPLETEBST(right-of-x sub-array)

3.4. Cache-based DuPI

The proposed architecture can be utilized as an engine in a

cached-based DuPI architecture, as shown in Figure 4. Our

experiments (Section 5.1) show that 4 inputs per pipeline is

the optimal number. Therefore, the cache-based architec-

ture consists of seven modules: cache (×2), 4-1 FIFO (×2),

DuPI, Delay, and 5-4 FIFO module (×2). Notation m − n
FIFO denotes a FIFO with m inputs and n outputs. At the

front are the two cache modules, which take in up to 8 IP

addresses at a time. These modules take advantage of the

internet traffic locality due to the TCP mechanism and ap-

plication characteristics [15]. The most recently searched

packets are cached. Any arriving packet accesses the cache

Dual-Port
SRAM

Write Bubble Table

Addr New
Content WE

Write Bubble ID

Fig. 5. Route update using write-bubbles

first. If a cache hit occurs, the packet will skip traversing the

pipeline. Otherwise, the packet must traverse the pipeline.

For IP lookup, only the destination IP of the packet is used to

index the cache. The cache update will be triggered, either

when there is a route update that is related to some cached

entry, or after a packet that previously had a cache miss re-

trieves its search result from the pipeline. Any replacement

algorithm can be used to update the cache. The Least Re-

cently Used (LRU) algorithm is used in the implementation.

We can insert multiple packets per clock cycle as long

as there are enough copies of the cache for those packets to

access simultaneously. We can insert at most four packets

during one clock cycle per pipeline. Without caching, the

packet input order is maintained due to the linear architec-

ture. However, with caching, the packet which has a cache

hit will skip traversing the pipeline, and may go out of order.

We add buffers to delay outputting the packets with a cache

hit, as shown in Figure 4 (Delay module). The length of the

delay buffer is equal to the sum of the pipeline depth and the

queue length. By these means, the packet input order can be

preserved. Packets coming out of the Delay module, as well

as each pipeline are buffered in 5-4 output FIFOs.

3.5. Route Update

We define two types of updates: in-place update and new-

route update. Once the FPGA is configured and a routing

table is stored, all updates on these prefixes are defined as

in-place updates. These updates include change flow infor-

mation and “bring up or down a prefix”. We can perform in-

place update by inserting write bubbles [16] (Figure 5). The

new content of the memory is computed off-line. When an

in-place update is initiated, a write bubble is inserted into the

pipeline. Each write bubble is assigned an ID. There is one

write bubble table (WBT) in each stage. It stores the update

information associated with the write bubble ID. When it ar-

rives at the stage prior to the stage to be updated, the write

bubble uses its ID to look up the WBT. Then it retrieves (1)

the memory address to be updated in the next stage, (2) the

new content for that memory location, and (3) a write enable

bit. If the write enable bit is set, the write bubble will use the

new content to update the memory location in the next stage.

For new-route update, if the structure of the tree is changed,

the BST must be rebuilt, and the entire memory content of

each pipeline stage must be reloaded.

140

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 11, 2008 at 11:12 from IEEE Xplore. Restrictions apply.

4. DuPI IMPLEMENTATION
4.1. Cache and FIFO Modules

As mentioned above, full associativity and LRU are used to

implement the cache module. Our experiments show that

16-entry cache is sufficient for our purposes. Since this is

a tree-based architecture, all the prefixes are stored in block

RAM (BRAM). It is desirable that a large amount of BRAM

is used to store routing tables. Therefore, this module is

implemented using only registers and logic. There are two

types of FIFOs in the architecture, as shown in Figure 4.

Even though they have different numbers of input and out-

put ports, their functionalities are identical. Since the num-

ber of inputs is different from the number of outputs in each

FIFO, and there is only one clock for both the writing and

reading sides, these are synchronous FIFOs with conversion.

For simplicity, no handshaking feature is implemented, and

therefore any further arriving packet is dropped when the

FIFO is full. Similar to the cache implementation, the two

FIFOs are implemented using only registers and logic, to

save BRAM for routing tables. Details of the implementa-

tions are not described in this paper due to page limitations.

4.2. DuPI

As mentioned earlier, the memory size in each stage doubles

that of the previous stage. Therefore, if they are full, stage

0 has one entry, stage 1 has two entries,· · · , stage n has 2n

entries. Each entry includes (1) a padded prefix (32 bits),

(2) a prefix length (5 bits), (3) flow information (4 bits), and

(4) an active status (1 bit). That makes a total of 42 bits per

entry. On a Xilinx FPGA, BRAM comes in blocks of 18Kb,

which can hold up to 438 entries. Hence, stages from 0 to 8
need one block of BRAM for each stage, or 9 blocks total.

We can avoid these inefficient BRAM by using distributed

RAM, due to the unit block of only 16 bit. However, this

optimization adds only 4K prefixes to the total, which is not

significant. Our target chip, Virtex-4 FX140, has 9936Kb of

BRAM on chip, or 552 blocks. With this amount of memory,

we can have 17 full stages, which hold 128K prefixes, and

one half-full stage, which holds 100K entries, for a total of

228K prefixes. The distributions of prefixes and BRAMs are

shown in Table 2 for stages 9 to 17. Our mapping algorithm

ensures that all entries of the last stage are left-aligned, and

thus can be safely mapped onto 228 memory blocks with-

out getting “out-of-bound” memory access violations. Our

design utilizes 539 memory blocks (311 for first 17 stages,

228 for the last stage), or about 97.6% of available mem-

ory. Let S be the size of a routing table, and assume that

128K < S < 228K. The number of memory blocks needed

can be calculated: 311 + 42 ∗ (S − 128K)/18 Kb.

In our design, external SRAM can be used to handle

larger routing tables. Since only the last stage is allowed not

to be full, we use 311 blocks (or 56%) of on-chip BRAM

for the first 17 full stages, and move the subsequent stages

Table 2. Number of prefixes and BRAMs in stages 9 to 17

Stage # 9 10 11 12 13 14 15 16 17

prefixes 512 1K 2K 4K 8K 16K 32K 64K 100K

BRAMs 2 3 5 10 19 38 75 150 228

Table 3. Number of prefixes and amount of SRAM
SRAM (Mb) 6 18 42 90

external stages 1 2 3 4

prefixes 256K 512K 1M 2M

onto external SRAM. In the current market, SRAM comes

in 2 Mb to 32 Mb packages [4], with data widths of 18, 32,

or 36 bits, and a minimum access frequency of 250 MHz.

Since each entry needs 42 bits, we must use two chips to

make 50 bits (18 + 32). Each stage uses dual port mem-

ory, which requires two address and two data ports. Stage

#17, which stores 128K prefixes, needs 6 Mb SRAM and

270 pins (2 × 17-bit address+2 × 50-bit data), going into

FPGA chip. Similarly, stage #18, which stores 256K pre-

fixes, needs 12 Mb SRAM and 272 pins. A largest Virtex-4

package, which has 1517 I/O pins, can interface with up to

four stacks of dual port SRAM. Using this package type,

we can have up to 21 full stages that can hold a routing ta-

ble of 2M prefixes. Moreover, since the access frequency of

SRAM is twice as fast as that of our target frequency, the

use of external SRAM should not adversely affect the per-

formance of our design. Table 3 describes the relationship

between the number of prefixes supported, the amount of

external SRAM needed, and the number of external stages.

5. IMPLEMENTATION RESULTS
5.1. Throughput

We implemented the proposed architecture in VHDL, using

Xilinx ISE 9.1, and Virtex-4 FX140 as the target. The im-

plementation results show a minimum clock period of 6.165
ns, or a maximum frequency of 162 MHz. Thus, DuPI can

handle a lookup rate of 324 MLPS, or over 100 Gbps data

rate (with the minimum packet size of 40 bytes), which is

7.5 times the OC-256 rate. We conducted some experiments

on the cache size of the architecture to analyze its impact

on the throughput. We found that caching is effective in im-

proving the throughput. Even with only 1% of the routing

entries being cached, the throughput reached almost 4 pack-

ets processed per cycle (PPC), per pipeline, or 8 PPC total.

Hence, the overall throughput was as high as 4×324 =1.3G

packets per second, i.e 416 Gbps for the minimum packet

size of 40 bytes, which is 2.6 times the OC-3072 rate. Such

a throughput is also 144% higher than that of the state-of-

the-art TCAM-based IP lookup engines [6].

5.2. Performance Comparison

Two key comparisons were performed with respect to the

size of supported routing table and throughput. The two

candidates were (1) the Ring architecture [17, 18] and (2)

the state of the art architecture on FPGA [12], since they

141

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 11, 2008 at 11:12 from IEEE Xplore. Restrictions apply.

can support the largest routing table to date and have the

highest throughput. All the resource data were normalized

to Virtex-4 FX140, as shown in Table 4.

With 324 MLPS throughput, our design was faster than

Architecture 1 (125 MLPS) and Architecture 2 (263 MLPS).

Using only BRAM, DuPI outperformed the above two ar-

chitectures with respect to the size of the supported routing

table (228K vs. 80K). The resource utilization was slightly

higher in this design compared to Architecture 1, but was

about half of Architecture 2. Furthermore, our architec-

ture supports static/dynamic RAM incremental update at run

time without any CAD tool involvement (as does Architec-

ture 1), by inserting the write bubble whenever there is an

update. In contrast, Architecture 2 relies on partial reconfig-

uration, which requires modifying, re-synthesizing, and re-

implementing the code to generate the partial bitstream. Our

design also supports in-order output packets, and has lower

power consumption (lower utilized resources). With regards

to scalability, DuPI can be partitioned to use BRAM+SRAM,

as discussed in Section 4.2, to support larger routing tables

of up to 2M prefixes. This can be done without sacrificing

the sustained throughput. The results are shown on Table 4

as Architecture 5 and 6.

5.3. Routing table size vs. Throughput trade-off
As shown in Table 4, our proposed architecture used at most

12.3% of the chip area. Hence, the same design can be du-

plicated to take advantage of the available resources. As

described in Section 4.2, up to 4 banks of dual-port SRAMs

can be connected to the largest Virtex-4 package. We can

duplicate the design 2× or 4×. When the design is dupli-

cated 2×, due to the limited amount of BRAM, we can fit

only 16 stages on chip, and 2 stages on external SRAM, for

each duplication. This architecture can support routing ta-

bles of up to 1M prefixes, with a throughput of 648 MLPS

for non-cache based design, and 2.6 GLPS for cache-based

design. Similarly, with 4×duplication, 15 stages can fit on

chip, and 1 stage on external SRAM, for each duplication.

This configuration supports routing tables of up to 512K pre-

fixes, with a throughput of 1.3 GLPS for non-cache based

design, and 5.2 GLPS for cache-based design. The resource

utilization is approximately 25% and 50%, for cache-based

implementations of 2× and 4×duplication, respectively.

6. CONCLUDING REMARKS

This paper proposed and implemented a SRAM-based dual

pipeline architecture for IP Lookup, named DuPI, without

using external TCAM. By using a binary search tree algo-

rithm, the address of the child node can be eliminated, re-

sulting in a very efficient memory utilization. Therefore,

DuPI can support large routing tables of up to 228K prefixes,

using on-chip BRAM. This is 3 times the size of a Mae-West

routing table (rrc08). Using external SRAM, DuPI can han-

dle even larger routing tables of up to 2M prefixes, which is

Table 4. Performance comparison
Architecture # slices BRAM # prefix Throughput

1 ([17, 18]) 1405(2.3%) 530 80K 125 MLPS

2 ([12]) 14274(22.7%) 254 80K 263 MLPS

3 (USC) 2009(3.2%) 539 228K 324 MLPS

4 (USC) 7982(12.7%) 539 228K 1.3 GLPS

5 (USC) 1813(2.9%) 311 2M 324 MLPS

6 (USC) 7713(12.3%) 311 2M 1.3 GLPS

∗ Our proposed architectures: (3) Non-cache-based; (4) Cache-based;

(5) Non-cache-based with SRAM; (6) Cache-based with SRAM

8 times the size of the current largest routing table (rrc11,

250K prefixes). DuPI also maintains the packet input or-

der and supports nonblocking route update. By employing

packet caching to improve the throughput, DuPI can achieve

a high throughput of up to 416 Gbps i.e. 2.6 times the OC-

3072 rate. If necessary, our architecture can be duplicated to

double and quadruple the throughput, with a 2× and 4× re-

duction in the size of supported routing tables, respectively.

We plan to enhance the architecture to support the IPv6 re-

quirement, as well as packet classification, and evaluate its

performance in real-life scenarios.

7. REFERENCES
[1] F. Baboescu, S. Rajgopal, L. Huang, and N. Richardson, “Hardware

implementation of a tree based IP lookup algorithm for oc-768 and

beyond,” in Proc. DesignCon ’05, 2005, pp. 290–294.
[2] Renesas CAM. [Online]. Available: http://www.renesas.com
[3] Cypress SRAMs. [Online]. Available: http://cypress.com
[4] Samsung SRAMs. [Online]. Available: http://samsung.com
[5] M. J. Akhbarizadeh, M. Nourani, D. S. Vijayasarathi, and T. Balsara,

“A non-redundant ternary CAM circuit for network search engines.”

IEEE Trans. VLSI Syst., vol. 14, no. 3, pp. 268–278, 2006.
[6] K. Zheng, C. Hu, H. Lu, and B. Liu, “A TCAM-based distributed par-

allel IP lookup scheme and performance analysis,” IEEE/ACM Trans.
Netw., vol. 14, no. 4, pp. 863–875, 2006.

[7] CACTI. [Online]. Available: http://quid.hpl.hp.com-:9081/cacti/
[8] RIS Raw Data. [Online]. Available: http://data.ris.ripe.net
[9] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, “Survey and

taxonomy of IP address lookup algorithms,” IEEE Network, vol. 15,

no. 2, pp. 8–23, 2001.
[10] H. Song and J. W. Lockwood, “Efficient packet classification for net-

work intrusion detection using fpga,” pp. 238–245, 2005, 1046223.
[11] H. Le, W. Jiang, and V. K. Prasanna, “A sram-based architecture for

trie-based ip lookup using fpga,” in Proc. FCCM ’08.
[12] H. Fadishei, M. S. Zamani, and M. Sabaei, “A novel reconfigurable

hardware architecture for IP address lookup,” in Proc. ANCS ’05, pp.

81–90.
[13] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani, “Scal-

able, memory efficient, high-speed ip lookup algorithms,” IEEE/ACM
Trans. Netw., vol. 13, no. 4, pp. 802–812, 2005, 1088750.

[14] M. Meribout and M. Motomura, “A new hardware algorithm for fast

ip routing targeting programmable routers,” in Network control and
engineering for Qos, security and mobility II. Kluwer Academic

Publishers, 2003, pp. 164–179, 963975.
[15] J. Verdú, J. Garcı́, M. Nemirovsky, and M. Valero, “Architectural im-

pact of stateful networking applications,” in Proc. ANCS ’05, pp. 11–

18.
[16] A. Basu and G. Narlikar, “Fast incremental updates for pipelined for-

warding engines,” in Proc. INFOCOM ’03, pp. 64–74.
[17] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, “A tree based

router search engine architecture with single port memories,” in Proc.
ISCA ’05, pp. 123–133.

[18] W. Jiang and V. K. Prasanna, “A memory-balanced linear pipeline

architecture for trie-based ip lookup,” in Proc. HOTI ’07, 2007, pp.

83–90.

142

Authorized licensed use limited to: National Cheng Kung University. Downloaded on November 11, 2008 at 11:12 from IEEE Xplore. Restrictions apply.

